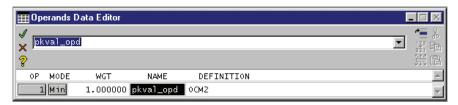

Tolerancing

User-defined tolerancing

User-defined tolerancing is a term used in OSLO to describe the process of settting tolerances when optical performance is measured by a user-defined error function. This may be the same function used to design the system, or a different function intended to represent as-used performance. In user-defined tolerancing, compensators are adjusted using the design optimization routines. This is slower than MTF/wavefront tolerancing by a wide margin, but it provides great flexibility. There are two levels of user-defined tolerancing in OSLO, depending on whether the tolerance operands are implemented as CCL or built-in operands. Of course, built-in operands provide increased speed.

Using CCL tolerance operands

As an example of the use of CCL operands, we consider tolerancing the air-spaced doublet (lasrdblt.len) supplied in the demo/lt directory. The air space in this design can be expected to be critical, since it controls the ray height on the overcorrecting surface. To get an idea of the tolerance on thickness 2, you can use the User-defined tolerance routine in OSLO.



To run a tolerance analysis on a lens, use a copy of the lens, not the original file. OSLO uses the same data structure for optimization and tolerancing, so tolerancing data will overwrite optimization data. After you have opened a saeparate copy of the lens, you should follow the steps below.

- Remove any variables, then make the thickness of the image surface a variable, which will be used as a compensator during tolerancing.
- 2) Click Tolerance>>Update Tolerance Data>>Surface to open the tolerance data spreadsheet. The only tolerance of present interest is the second thickness. The ISO 10110 default value for this thickness is 0.2 mm, which is much too loose for the present system. As a general rule, it is best to start with tolerances that are too small and then increase them as you become familiar with their effect on performance. Change the tolerance to 0.05 mm, and close the spreadsheet.
- 3) Enter the star command *opsettol. The star command will set up the proper callback function, and the operands spreadsheet will open. The various options for tolerance operands, labeled Ocmx, will be shown in the text output window, to help you in choosing the desired one for your application.

```
*opsettol (operand numbers in parentheses)
GEO_RMS_R(1) PKVAL_OPD(2) RMS_OPD(3) STREHL(4)
0.000692 0.033080 0.011037 0.995416
```

4) In the spreadsheet, enter **ocm2** for the tolerance operand, and enter the name **pkval_opd** to provide a mnemonic description of the operand.

5) Now, to compute the effect of a .05 mm tolerance on the peak-to-valley opd, click Tolerance>>User-Defined Tolerancing. Choose *Sensitivity* from the dialog box, and select Air space from the options list, then click OK.

What happens is that OSLO computes the present value of the tolerance error function with the nominal system, then changes the tolerance of the second thickness by 0.05, and re-optimizes the system to restore the original error function value (n.b. it does not minimize the function). Both positive and negative perturbations are evaluated. After a short time, the text window should contain an analysis similar to the following.

*TOLERANCE SENSITIVITY ANALYSIS 0.033080 ERROR FUNCTION FOR NOMINAL SYSTEM: AIR SPACE TOLERANCE ERROR FUNCTION CHANGE COMPENSATED CHANGE PLUS PERT MINUS PERT TOLERANCE PLUS PERT MINUS PERT 0.294596 SRF 6.973735 0.259757 0.05 6.953074 STATISTICAL SUMMARY UNCOMPENSATED COMPENSATED WORST CASE CHANGE 6.973735 0.294596 STANDARD DEVIATION RSS 6.973735 0.294596 UNIFORM 4.026288 0.170085 **GAUSSIAN** 3.067138 0.129567 COMPENSATOR STATISTICS COMP STD DEV MEAN MAX 0.000122 0.149552 0.149674 0.149674

The analysis shows the effects of a .05 air space tolerance on the error function, which represents the peak-to-valley opd. The error function changes are shown for both positive and negative perturbations, and for both compensated (i.e. adjustment of the image distance) and uncompensated (fixed image distance) conditions. Then comes a statistical analysis of the probable effects of this tolerance specification on a large number of systems, assuming various probability distributions.

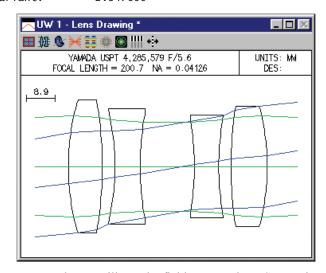
The above analysis shows the change for a given tolerance. You may instead be interested in the tolerance that can be allowed to produce a given change, say 0.15, which would bring the system to (approximately) the diffraction limit. Click Tolerance>>User-Defined Tolerancing again, but this time select *Inverse Sensitivity*. Select Air Space from the list, then enter 0.15 as the allowed change in the error function. The text window will then show that the allowed tolerance is about 7 microns if the focus is not adjusted, or 35 microns if the focus is used to compensate for a spacing error.

```
*INVERSE SENSITIVITY ANALYSIS
ERROR FUNCTION FOR NOMINAL SYSTEM: 0.033080
ALLOWED CHANGE IN ERROR FUNCTION: 0.150000

AIR SPACE TOLERANCE
ALLOWED TOLERANCE
SRF UNCOMPENSATED COMPENSATED
2 0.007301 0.035245
```

The above analysis, while simple, shows the essential steps in tolerancing.

Using built-in operands


As an example of using built-in operands with the user-defined tolerancing routines, we will compute power (spherical) error tolerances for a four-element copy lens from the OSLO lens library. Open the lens "public\len\lib\toolbox\yama001.len." Before saving the lens to a temporary file, move the thickness of the next to last surface to the image surface and then delete the surface, so that your results will correspond to the ones below. In tolerancing, particularly in user-defined tolerancing, you should not expect exact duplication of results. This is because tolerancing involves optimization routines that may be set up slightly differently, or use different parameters, from the ones use to make the example output.

1) Note the lens is designed for a magnification of -1. As a first step in tolerancing (after saving the file under a new name), we will assign apertures to the elements so that there is no vignetting. Close the lens spreadsheet if it is open, then use Optimize>>Support Routines>>Vignetting>>Set Apertures, and accept the default values shown in the dialog box. The resulting lens is

	DATA	70 = /5 6			
SRF OBJ	A USPT 4,285,5 RADIUS 	THICKNESS 406.280280	APERTURE RADIUS 56.340000	GLASS SPE NOT AIR	TE
AST		-36.854492	17.000000 AK	AIR	
2 3	71.953519 -112.429158	10.404504 3.825293	20.300000 20.300000	LAKN13 C AIR	
4 5	-78.402563 84.822117	7.660029 16.593731	17.600000 15.600000 к	LF5 C AIR	
6 7	-80.540361 82.495107	7.411215 3.759799	13.900000 15.600000	LF5 C AIR	
8 9	121.677279 -70.206359	11.054088 373.312870	18.400000 18.400000	LAKN13 C AIR	
10		0.001155	57.000000 κ	AIR	
IMS			56.852074 s		

*PARAXIAL CONSTANTS

Effective focal length: 200.690160 Lateral magnification: -1.009090 Numerical aperture: 0.041257 Gaussian image height: 56.852145 Working F-number: 12.119077 Petzval radius: -2.0564e+03 Lagrange invariant: -2.347600

2) For tolerance operands, we will use the field-averaged RMS spot size, computed in three wavelengths. Since this is a rotationally-symmetric lens and we are only perturbing the curvatures, we can use the OSLO error function generator with the default field and pupil sampling options. In the dialog box for the Optimize>>Generate Error Function>>OSLO Spot Size/Wavefront dialog box, accept all the defaults except for the

color correction method, which should be set to *Use All Wavelengths*. After generating the error function, you can compute the operands using the Ope button in the text output window, which should produce the following.

*OPERANDS			
OP MODE	WGT NAME	VALUE	%CNTRB DEFINITION
O 20 M	0.750000 Yrms1	0.015309	12.71 RMS
O 61 M	1.500000 Xrms2	0.012533	17.03 RMS
o 102 M	1.500000 Yrms2	0.017178	31.99 RMS
o 143 M	0.375000 Xrms3	0.012813	4.45 RMS
o 184 M	0.375000 Yrms3	0.035323	33.82 RMS
MTN RMS FRE	OR: 0.017534		

3) We will assume that we are going to allow a focus adjustment in the final lens assembly, so next you should designate that the back focus (the thickness of surface 10) is a variable to be used as a compensator.

*VAR	IABLE	S						
VB	SN	CF	TYP	MIN	MAX	DAMPING	INCR	VALUE
V 1	10	_	TH			1.000000	0.001693	0.001155

4) Now use Lens>>Show Tolerance data>>Surface to display the default (ISO110) tolerances for the lens in the text output window:

	FACE TOLES) E/5 6							
IAMA				NGES TI	HICKNESS	TH TOL		RN TOL	DECEN	TILT
	CON CNST	CC TOL	PWR	IRR	TLC TOL	DZ TOL	GLASS		Y/X	A/B
1					-36.8545	0.4000	AIR			
2	71.9535		10.00*	2.00*	10.4045	0.4000	LAKN13	0.0010		
								0.8000		0.1667
2	112 /202		10 00*	2 00%	2 0252	0 4000	AIR			0.1667
5	-112.4292		10.00	2.00	3.0233	0.4000	AIK			0.1667
4	-78.4026		10.00*	2.00*	7.6600	0.4000	LF5			0.1667
								0.8000		0.1667
5	84.8221		10 00*	2 00*	16.5937	0 4000	AIR			0.1667
J			10.00	2.00			AIK			0.1667
6	-80.5404		10.00	2.00	7.4112	0.2000	LF5			0.3333
								0.8000		0.3333
7	82.4951		10 00*	2 00*	3.7598	0.4000	AIR			0.1667
•			10.00	2.00			71211			0.1667
8	121.6773		10.00*	2.00*	11.0541	0.4000	LAKN13			000.
								0.8000		0.1667
9	-70.2064		10.00*	2.00*	373.3129	0.4000	AIR			0.1667
										0.1667
10					0 0013					
10					0.0012					

FRINGE WAVELENGTH: 0.546070
Fringes measured over clear aperture of surface unless indicated.
* Fringes measured over 30 mm diameter test area, per ISO 10110.

Examination of the above listing reveals that the spherical error tolerance is 10 fringes, measured over a 30 mm diameter test area for each surface. For this example, we will use the default of 10 fringes, but specify that the error is to be measured over the entire area of each surface.

5) To do this, we open the tolerance data spreadsheet and enter "10" for the spherical form error for surfaces 2 through 9. You can enter the values one by one in the spreadsheet, but it is easier to close the spreadsheet and use the Tolerance>>Update Tolerance Data>>Set Tolerance Value command, which can change all surfaces at once. After making the change, reopen the spreadsheet, which should appear as follows.

Tilt tolerances are specified in degrees.

SRF	RADIUS	RD TOL	PWR FR	IRR FR	THICK	TH TOL	GLASS	RN TOL	DY TOL	TA TOL	^	
1	0.0	0.0	0.0	0.0	-36.854	0.4000	AIR	0.0	0.0	0.0		
2	71.954	0.0	10.00	2.00*	10.405	0.4000	LAKN13	0.0010	0.0	0.1667		
3	-112.429	0.0	10.00	2.00*	3.825	0.4000	AIR	0.0	0.0	0.1667		
4	-78.403	0.0	10.00	2.00*	7.660	0.4000	LF5	0.0010	0.0	0.1667		
- 5	84.822	0.0	10.00	2.00*	16.594	0.4000	AIR	0.0	0.0	0.1667		
б	-80.540	0.0	10.00	2.00	7.411	0.2000	LF5	0.0010	0.0	0.3333		
7	82.495	0.0	10.00	2.00*	3.760	0.4000	AIR	0.0	0.0	0.1667		
- 8	121.677	0.0	10.00	2.00*	11.054	0.4000	LAKN13	0.0010	0.0	0.1667		
9	-70.206	0.0	10.00	2.00*	373.313	0.4000	AIR	0.0	0.0	0.1667		
10	0.0	0.0	0.0	0.0	0.001	0.0			0.0	0.0		
FRI	NGE WAVEL	ENGTH:	0.54	16070								
F	ringes me	easured	over cl	lear ape	erture o	fsurfac	ce unless in	ndicate	d.			
* F	ringes me	easured	over 30	mm dia	ameter to	est area	a, per ISO 1	10110.				
Т	Tilt tolerances are specified in degrees.											
Display all surface tolerances: ○ Yes ● No												
	Visiting with swittered contributes to the original to the ori											

6) Note that the lack of the asterisk next to the spherical fringe tolerance means that the fringes are measured over the clear aperture of the surface, as we want. Now we perform a sensitivity analysis for the spherical form error by selecting Tolerance>>User-defined Tolerancing >> Surface, choosing *Sensitivity* and selecting Power fringes from the options list.

*TOLERANCE SENSITIVITY ANALYSIS
ERROR FUNCTION FOR NOMINAL SYSTEM: 0.017534

POWER	ERROR TOLE	RANCE											
	ERROR FUNCTION CHANGE COMPENSATED CHANGE												
SRF	TOLERANCE	PLUS PERT	MINUS	PERT	PLUS PERT	MINUS PERT							
2	10.0	0.015823		14216	0.000250	-0.000224							
3	10.0	0.016268		13579	0.001278	-0.001205							
4	10.0	0.014128		17034	-0.001387	0.001514							
5	10.0 10.0	0.016408 0.023312		17957 25297	-0.000143 -0.000605	0.000174 0.000647							
3 4 5 6 7 8 9	10.0	0.023312		22830	-0.000003	0.000967							
8	10.0	0.020502		18393	0.000778	-0.000367							
9	10.0	0.021476		19538	0.000582	-0.000544							
STATI	STICAL SUMM												
		UNCOMPE		COMPENSAT									
	CASE CHANG		7189	0.00620	3								
	ARD DEVIATI SS		6306	0.00251	7								
	NIFORM		2509	0.00231	-								
-	AUSSIAN		4764	0.00143									
0.	GAUSSIAN 0.027/07 0.00110/												
COMPE	COMPENSATOR STATISTICS												
COMP			D DEV	MAX	RSS								
TH	10 0.0	05922 1.5	36235	1.847792	4.347659								

As expected, the change in performance is much less when we allow for refocusing. Assuming that the errors have a uniform distribution, the standard deviation of the change in the average spot size is reduced from 33 μ m to 1.5 μ m if back focus adjustment is allowed. However, to achieve this performance level, we need to allow for a (2σ) range in focus of ± 3 mm. This provides the data we need to build a focusing mechanism.

For this lens, we will assume that the maximum allowed spot size, average over the field and chromatic range, is 20 μ m. Since this value for the nominal system is 17.5 μ m, this means the maximum allowed change is 2.5 μ m. If we desire a probable success rate of 99%, the table presented above indicates that we need a ratio of maximum allowed change to standard deviation of 2.5, i.e., a standard deviation of 1.0 μ m. We want to redistribute the tolerances to target this standard deviation and also to balance the contributions of the surfaces to this target. Using $\sigma_{\delta S} = 0.001$, $\kappa = 0.58$ (uniform distribution) and n = 8 in Eq. (9.57) yields a target contribution of $\Delta S_{tar} = 0.0006$. We use this value as the requested change in an *Inverse Sensitivity* analysis.

ALLOWED CHANGE IN ERROR FUNCTION: 0.000600

POWER ERROR TOLERANCE ALLOWED TOLERANCE UNCOMPENSATED SRF COMPENSATED 1.749036 22.487217 2 3 4 1.604631 1.550645 4.765315 4.064342 1.656797 29.400028 5 6 7 1.380191 9.298149 1.425375 6.426525 8 1.506102 7.705936

1.490417

Without back focus adjustment, we see that the allowed spherical error tolerance is about 1.5 fringes for surface 3, 4, 6, 7, 8, and 9 and 2 fringes for surfaces 2 and 5. We now set the tolerances to these values, and re-run the *Sensitivity* analysis.

10.304978

*TOLERANCE SENSITIVITY ANALYSIS ERROR FUNCTION FOR NOMINAL SYSTEM: 0.017534

POWER	R ERROR TOLER	RANCE								
		ERROR FUNC	TION CHANGE	COMPENSA	COMPENSATED CHANGE					
SRF	TOLERANCE	PLUS PERT	MINUS PERT	PLUS PERT	MINUS PERT					
2	2.0	0.001122	0.000552	4.8010e-05	-4.6960e-05					
3	1.5	0.000834	0.000105	0.000187	0.000105					
4	1.5	9.6535e-05	0.000896	9.6535e-05	0.000220					
5	2.0	0.000705	0.001284	-3.1057e-05	3.2300e-05					
6	1.5	0.000563	0.001238	-9.3445e-05	9.4393e-05					
7	1.5	0.000415	0.001128	-0.000129	0.000134					
8	1.5	0.000988	0.000343	0.000112	-0.000110					
9	1.5	0.001019	0.000411	8.4944e-05	-8.4107e-05					
STATI	STATISTICAL SUMMARY									

WORST CASE CHANGE	UNCOMPENSATED 0.008507	COMPENSATED 0.000912
STANDARD DEVIATION RSS UNIFORM GAUSSIAN	0.003037 0.001753 0.001336	0.000365 0.000211 0.000161

The standard deviation for the uncompensated case is now about 1.5 μ m. This value is larger than the expected value of 1 μ m because of deviations from the linear dependence of the spot size on the surface perturbations.

Based on the earlier inverse sensitivity analysis for the compensated case, we will assign tolerances of 5 fringes to surfaces 3, 4, 7, and 8, 10 fringes to surfaces 6 and 9, and 20 fringes to surfaces 2 and 5, and repeat the sensitivity analysis.

*TOLERANCE SENSITIVITY ANALYSIS ERROR FUNCTION FOR NOMINAL SYSTEM: 0.017534

POWEI	R ERROR TOLER	RANCE									
ERROR FUNCTION CHANGE COMPENSATED CHANGE											
SRF	TOLERANCE	PLUS PERT	MINUS PERT	PLUS PERT	MINUS PERT						
2	20.0	0.040977	0.039167	0.000527	-0.000422						
3	5.0	0.005663	0.003696	0.000631	-0.000613						
4	5.0	0.003848	0.005989	-0.000711	0.000743						
4 5	20.0	0.044052	0.045786	-0.000255	0.000379						
6	10.0	0.023312	0.025297	-0.000605	0.000647						
6 7	5.0	0.006392	0.008149	-0.000414	0.000461						
	5.0	0.007201	0.005568	0.000383	-0.000357						
8 9	10.0	0.021476	0.019538	0.000582	-0.000544						
-		******									
STAT	ISTICAL SUMMA	ARY									
0.,,,,		UNCOMPEN	ISATED COMPEN	SATED							
WORS	T CASE CHANGE										
	DARD DEVIATION		0.00								
/ (14)	-,										

0.001577

0.000910

0.000694

0.071154

0.041081 0.031294

COMPENSATOR STATISTICS

RSS

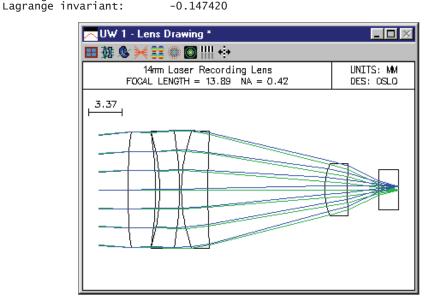
UNIFORM

GAUSSIAN

Z86 Tolerancing

COMP MEAN STD DEV MAX RSS TH 10 0.007251 1.723657 2.922255 4.879934

With these tolerances, the standard deviation of the performance changes is slightly less than our target of 1 μ m. Also note that the individual contributions are more evenly distributed than in the previous analysis. The range of focus adjustment that is required has increased slightly to about ± 3.5 mm.


Change table tolerancing

Working F-number:

An example of the use of change tables is given in the paper by Smith(2). In this paper, Smith presents an analysis of the following laser recording lens, which is designed to work at a wavelength of $0.82~\mu m$.

```
*LENS DATA
14mm Laser Recording Lens
                        THICKNESS
                                     APERTURE RADIUS
 SRF
          RADIUS
                                                             GLASS SPE NOTE
 OBJ
                        76.539000
                                        1.949220
                                                               AIR
                         2.800000
 AST
        50.366000
                                        5.825000 A
                                                              SF11 C
  2
       -39.045000
                         0.435265
                                        5.810000
                                                               AIR
  3
       -19.836000
                         2.000000
                                        5.810000
                                                              SF11 C
  4
       -34.360000
                         0.200000
                                        5.950000
                                                               AIR
        17.420000
                         2.650000
                                        5.905000
                                                              SF11 C
                                        5.610000
  6
        79.150000
                        11.840000
                                                               AIR
  7
          7.080000
                         2.240000
                                        2.620000
                                                              SF11 C
  8
        15.665000
                         3.182000
                                        2.065000
                                                               AIR
  9
                         2.032000
                                        2.000000
                                                             ACRYL C
 10
                                        2,000000
                                                               AIR
                                        0.350759 s
 IMS
*WAVELENGTHS
CURRENT
         WV1/WW1
        0.820000
   1
        1.000000
*PARAXIAL CONSTANTS
Effective focal length:
                                              Lateral magnification:
                                                                          -0.179559
                               13.888494
                                                                           0.350000
                                0.420000
   Numerical aperture:
                                              Gaussian image height:
```

1.190476

Petzval radius:

-15.782541

The performance specification for this lens is that the Strehl ratio must be at least 0.75 over the entire field. Working from this requirement and the nominal design prescription, Smith shows that the tolerance budget must produce no more than 0.173 λ (peak-to-valley) of OPD.

Following the discussion in Section IV, we assign the following initial tolerances to the lens in order to compute the change tables. Note that the fringes are specified at a wavelength of 0.58929 μm (Sodium yellow). The sign of the spherical error fringes has been chosen to better match the change table in Table 2 of the paper. Using all positive values only changes the sign of the

² W. J. Smith, "Fundamentals of establishing an optical tolerance budget," Proc. SPIE Vol. 531, pp. 196-204 (1985).

corresponding change table entry and thus has no effect on the statistical sum (RSS) value. The tilt tolerance of 0.057 degrees is equal to 1 milliradian.

SRF	RADIUS	RD TOL	PWR FR	IRR FR	THICK	TH TOL	GLASS	RN TOL	DY TOL	TA TOL	<u>.</u>	
1	50.366	0.0	-10.0	1.00	2.800	0.2000	SF11	0.0010	0.0	0.0570		
- 2	-39.045	0.0	10.00	1.00	0.435	0.2000	AIR	0.0	0.0	0.0570		
3	-19.836	0.0	10.00	1.00	2.000	0.2000	SF11	0.0010	0.0	0.0570		
4	-34.360	0.0	10.00	1.00	0.200	0.2000	AIR	0.0	0.0	0.0570		
- 5	17.420	0.0	-10.0	1.00	2.650	0.2000	SF11	0.0010	0.0	0.0570		
- 6	79.150	0.0	-10.0	1.00	11.840	0.2000	AIR	0.0	0.0	0.0570		
7	7.080	0.0	-10.0	1.00	2.240	0.2000	SF11	0.0010	0.0	0.0570		
- 8	15.665	0.0	-10.0	1.00	3.182	0.0	AIR	0.0	0.0	0.0570		
9	0.0	0.0	0.0	0.0	2.032	0.0	ACRYL	0.0010	0.0	0.0		
10	0.0	0.0	0.0	0.0	0.0	0.0	AIR	0.0	0.0	0.0		
11	0.0	0.0	0.0	0.0	0.0	0.0			0.0	0.0		
FRI	NGE WAVEL	ENGTH:	0.5	39290								
F	Fringes measured over clear aperture of surface unless indicated.											
Tilt tolerances are specified in degrees.												
Disp	Display all surface tolerances: O Yes No											

Table 2 of Smith's paper is given in terms of peak-to-valley OPD, so when we compute the change tables, we enter a scale factor of 0.25 for the tolerance units. We need to compute change tables for power (spherical) error, element thickness, air spaces, index of refraction, and surface tilt to obtain the data presented in Table 2. (In the interest of clarity and since we are only interested in spherical aberration, coma, and astigmatism, only the first group of 9 tolerance aberrations is displayed in the output below. OSLO always displays a change table containing entries for all 18 aberrations and system quantities.)

TOLE T (1	RANCE UN rans.) =	NITS		SIS (Long.) :	= 0.	018488	W (Wvfr	.) =	1.0	
SRF NOM 1 2 3 4 5 6 7 8 RSS	TOL VAL -10.000 10.000 10.000 -10.000 -10.000 -10.000 -10.000	TR SPH 0.02 0.01 -0.00 -0.05 0.01 -0.03 0.03 -0.01 0.06 0.09	AX DMD	COMA FI -0.05 0.00 -0.01 0.02 -0.01 -0.01 0.00 0.00 0.01 0.03	LD DMD	YFS -0.92 -2.69 2.68 -2.59 2.60 -2.58 2.52 -2.53 2.35 7.27	XFS -0.72 -2.70 2.69 -2.59 2.61 -2.58 2.52 -2.53 2.36 7.28	DEL BF -0.59 0.00 -0.00 0.00 -0.01 -0.01 0.02	AX OPD 0.03 0.01 -0.00 -0.00 0.01 -0.01 0.03 -0.01 0.06 0.07	FLD OPD 0.15 0.00 -0.00 0.00 0.00 -0.01 0.01 -0.00 0.03 0.04
	0.200 0.200 0.200 0.200 0.200	CCKNESS S TR SPH 0.02 -0.00 -0.03 0.00 -0.02 0.04	ENSITIVITAX DMD	TY ANALYS: COMA FI -0.05 0.00 -0.00 -0.04 -0.04 0.06		YFS -0.92 -0.01 -0.61 -5.80 -18.17 19.09	XFS -0.72 -0.01 -0.62 -5.81 -18.18 19.10	DEL BF -0.59 0.00 0.01 0.01 0.02 0.02	AX OPD 0.03 -0.00 -0.01 0.00 -0.01 0.01	FLD OPD 0.15 -0.00 -0.01 -0.01 -0.01 0.02
	0.200 0.200 0.200 0.200	SENSITIVI TR SPH 0.02 -0.02 0.01 0.01	TY ANALYS AX DMD	COMA FI -0.05 0.02 -0.02 -0.06	LD DMD 	YFS -0.92 -1.91 -0.14 -6.91	XFS -0.72 -1.92 -0.14 -6.92	DEL BF -0.59 -0.00 0.00 0.01	AX OPD 0.03 -0.01 0.01 0.01	FLD OPD 0.15 0.00 -0.00 -0.01
	FRACTIVE TOL VAL 0.0010 0.0010 0.0010 0.0010 0.0010	INDEX SE TR SPH 0.02 0.01 0.00 -0.01 -0.00 0.00 0.01	AX DMD	Y ANALYSI: COMA FI -0.05 0.00 -0.00 -0.00 0.00 0.00 0.00		YFS -0.92 -0.92 0.40 -0.91 -0.31 0.10 1.40	XFS -0.72 -0.92 0.41 -0.92 -0.31 0.10 1.40	DEL BF -0.59 0.00 -0.00 0.00 0.00 -0.00 0.00	AX OPD 0.03 0.01 0.00 -0.00 -0.00 0.00 0.01	FLD OPD 0.15 0.00 0.00 -0.00 -0.00 0.00

^{*}SURFACE TILT SENSITIVITY ANALYSIS

SRF	TOL VAL	TR SPH	AX DMD	COMA F	LD DMD	YFS	XFS	DEL BF	AX OPD	FLD OPD
NOM		0.02		-0.05		-0.92	-0.72	-0.59	0.03	0.15
1	0.057	0.00		0.04		-0.01	-0.02	-0.01	0.02	0.01
2	0.057	-0.00		-0.07		0.05	0.03	0.04	0.04	-0.02
3	0.057	0.00		0.17		-0.06	-0.04	-0.05	0.13	0.11
4	0.057	0.00		-0.08		0.05	0.03	0.04	0.05	-0.01
5	0.057	-0.00		0.11		0.02	0.00	0.02	0.08	0.05
6	0.057	-0.00		-0.11		0.02	0.01	0.01	0.08	0.00
7	0.057	-0.00		0.02		-0.03	-0.00	-0.01	0.00	0.02
8	0.057	-0.00		-0.06		0.01	-0.01	0.00	0.04	-0.02
RSS		0.00		0.27		0.10	0.06	0.08	0.19	0.13

As mentioned in the paper, the aberrations of concern for this lens are spherical aberration, coma, and astigmatism (since the lens will be refocused for off-axis image points). We can convert the change table values for YFS and XFS to astigmatism by taking their difference. The resulting RSS astigmatism values for the five analyses are

Perturbation	Astigmatism RSS (λ)				
Curvature	0.022				
Thickness	0.012				
Air space	0.015				
Refractive index	0.003				
Surface tilt	0.060				

The RSS totals by aberration are

Aberration	RSS Total (λ)
Spherical	0.103
Coma	0.283
Astigmatism	0.067

The RSS totals by perturbation class are

Perturbation Class	RSS Total (λ)
Radius	0.099
Thickness/Air space	0.103
Refractive index	0.011
Surface tilt	0.273

Thus, the RSS = sqrt(.099**2+.103**2+.011**2+.273**2) = 0.308 λ , in excellent agreement with the analysis in Table 2 of Smith's paper. This value already exceeds the 0.173 λ that we have available in our budget. If we consider the additional affect of one fringe of irregularity, the total OPD variation becomes 0.84λ .

The art of tolerance budgeting comes in when we must reassign the tolerances in an attempt to reduce the total OPD to an acceptable level. The approach taken by Smith is given in Section VI, "Adjusting the Tolerance Budget", which is reproduced below.

The OPD of 0.84 wavelengths exceeds the value of 0.288 which we determined in Section III to be the maximum which we could allow in order to maintain the Strehl ratio of 0.75. Since it is too large by a factor of .84/.288 = 2.9X, we could simply reduce our trial budget by this factor across the board. This is not usually the best way.

An inspection of Table 2 and its footnotes [the change table] indicates that the sensitivity of the tolerances varies widely, ranging from the total insensitivity of coma to the indicated index changes, to significant effects from the radius and thickness changes and very heavy contributions from the assumed surface tilts (or decentrations).

We have previously (in the last paragraph of Section II) noted that the RSS process indicates that the larger tolerance effects are much more significant than the smaller; the significance varies as the square of the size. Thus, a rational approach is to reduce the tolerances on those parameters which are the most sensitive. Conversely, one might also consider increasing the tolerances on those parameters which are relatively insensitive.

This is the technique which we shall apply here. However, there are practical considerations which should be observed. In most optical shops there is a fairly standard tolerance profile. For example, a shop may do most of its work to a five ring test glass fit, a thickness tolerance of ± 0.1 mm, and centering to a one minute deviation. If a larger tolerance is allowed, there will be a saving, but it will not be proportional to the increase in the tolerance. This is because the shop will still tend to produce to its customary profile. They may be able to relax their procedures a bit, and their usual percentage of rejections will drop, but the tendency will be very strong to produce the usual profile whether it has been specified or not. Thus, there is a limit on the increase in tolerance size which will produce a real savings. As another example, many optical glasses are routinely produced to an index tolerance of $\pm .001$ or $\pm .0015$. There is no saving in cost if the tolerance is increased beyond the standard commercial tolerance.

When tolerances are reduced <u>below</u> the "standard profile" however, the cost of fabrication begins to climb. This results from the additional care and effort necessary to hold the tighter tolerances and/or an increase in the rejection rate. In most shops there is effectively a practical limit to the smallness of a given class of tolerance, since the cost of fabrication rises asymptotically toward infinity as this limit is approached.

Thus, for most shops there is both a high limit on tolerances, beyond which there is no savings, and a low limit, which the shop is barely capable of meeting. Obviously, one should confine the tolerance specifications to this range (or find another shop whose capabilities encompass one's requirements).

If we take the RSS of the contributions of each parameter tolerance individually, as we have done in the last column of Table 2 [see the RSS totals by perturbation class table above], then we get a convenient measure of the sensitivity of each tolerance. Examination of the table indicates that the variations of radius, thickness, index and especially surface tilt are all significant contributors to the final RSS OPD. If there are a few very large contributors, a possible general technique would be to reduce any dominant tolerances by a factor approximating the factor by which the OPD of [the] trial budget exceeds the acceptable OPD. Another technique is to make the tolerance size inversely proportional to its sensitivity, so that each tolerance produces the same OPD; this is obviously subject to the limitations outlined above, as well as the necessity to weigh each class of tolerance in some way so as to take into account their different natures and costs.

Following this line, we get the following budget, for which the RSS OPD is 0.167 λ , just slightly better than the 0.173 λ required for our Strehl ratio specification of 75%.

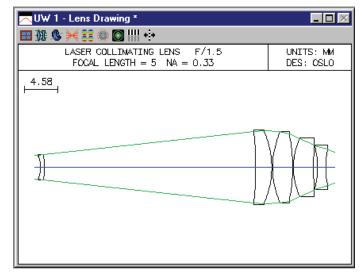
*TOLE	ERANCES									
14mm	Laser Reco	ording L	ens							
		RADIUS	FRI	NGES	TI	HICKNESS		INDEX	DECEN	TILT
SRF	RADIUS	TOL	SPH	IRR	THICKNESS	TOL	GLASS	TOL	TOL	TOL
1	50.36600	0.0	1.00	0.20	2.80000	0.1000	SF11	0.0010	0.0	0.011
2	-39.04500	0.0	1.00	0.20	0.43527	0.0200	AIR	0.0	0.0	0.011
3	-19.83600	0.0	1.00	0.20	2.00000	0.0500	SF11	0.0010	0.0	0.011
4	-34.36000	0.0	1.00	0.20	0.20000	0.0400	AIR	0.0	0.0	0.011
5	17.42000	0.0	1.00	0.20	2.65000	0.0500	SF11	0.0010	0.0	0.011
6	79.15000	0.0	1.00	0.20	11.84000	0.0300	AIR	0.0	0.0	0.011
7	7.08000	0.0	1.00	0.20	2.24000	0.0700	SF11	0.0010	0.0	0.011

/TC 1 •	204
Tolerancing	291
1 Olci alicilig	2)1

8	15.66500	0.0	1.00	0.20	3.18200	0.0	AIR	0.0	0.0 (0.011	
	0.0										
	0.0				0.0	0.0			0.0	0.0	

FRINGE WAVELENGTH: 0.589290
Fringes measured over clear aperture of surface unless indicated.

Wavefront/MTF tolerancing


*LENS DATA

As an example of using these tolerance routines, we will compute tolerance effects for a scaled version of a laser collimating lens from the OSLO library. The base lens we want to open is the public lens file "\len\lib\smithgen\ch22\ho5mmc.len". When opened, this lens has a focal length of 100 mm. The system notes tell us that the lens was designed for a focal length of 5 mm. We can restore this focal length by right-clicking in the surface data spreadsheet, selecting Scale Lens from the menu, and choosing "Scale lens to new focal length" from the fly-out menu, and entering "5" for the new focal length. This lens is designed for use with a Helium-Cadmium laser at a wavelength of $0.4416~\mu m$, so only 1 wavelength is defined. Also, since we are working with a collimator, we will only consider the on-axis performance. Click the Field Points button in the surface data spreadsheet to open the Field Points spreadsheet, and delete field points 2 and 3. In the Setup spreadsheet, set the object distance to 1.0×10^{20} and the field angle to 5.7×10^{-5} degrees (n.b. if you enter 0.0 for the field angle, it will be set automatically to this value, since 0.0 field is not allowed). In order to compare the your results to the ones shown here, move the focus shift (0.014 mm) from surface 13 to the image surface, and delete surface 13. The specification for the modified lens is given below.

LASER SRF OBJ		LENS F/1 THICKNESS 1.0000e+20		URE RAD		GLASS AIR	SPE	NOTE	
AST			1.	666655	AK	AIR			
2	-4.241940 -8.586057	0.552322 28.962576		666655 769039		BK7 AIR	С		
4 5	-57.502645 -12.502519			952020 088569		BK7 AIR	С		
6 7	12.244025 -22.689595			915560 668527		BK7 AIR	С		
8 9	9.937532 139.154768	2.761613 0.546917		001831 111206		BK7 AIR	С		
10 11	-11.530153 11.290666	1.104643		026087 494580		BK7 AIR	С		
12		7.733278	s 2.	578630	K	AIR			
IMS		-0.014000	0.0	004625	S				
	LENGTHS NT WV1/WW1 0.441600 1.000000								
*PARAX Eft Num Wor Lag	XIAL CONSTANT fective foca merical apert rking F-numbe grange invar	rs length: 5.0 ture: 0.0 er: 1.0 iant: -1.650	000000 329998 515161 00e-06	Late Gaus Petz	eral magnif ssian image zval radius	e heigh	nt:	5.0000e 5.0000e 226.799	-06

From a spot diagram, we see that the on-axis RMS OPD for the nominal design is 0.05 waves.

```
*WAVEFRONT
WAVELENGTH 1
PKVAL OPD RMS OPD STREHL RATIO YSHIFT XSHIFT RSZ
0.214591 0.049599 0.908313 -- -- --
```


We will compute the sensitivity of the on-axis RMS OPD to decentration of the five components in the lens. We assign a trial decentration tolerance of 10 μ m to surfaces 2, 4, 6, 8, and 10 (i.e., the front surfaces of the components). OSLO assumes that the component decentrations have a Gaussian distribution that is truncated at the $2\sigma = 10 \mu$ m point.

	DECENT	RATION	CLEAR APER	RTURE TILT	CENTER OF	CURV TILT		
SRF	DCY	DCX	ALPHA BETA		ALPHA	BETA		
2	0.010000	0.010000	0.000000	0.000000	0.500000	0.500000		
3			0.000000	0.000000	0.000000	0.000000		
4	0.010000	0.010000	0.000000	0.000000	0.120000	0.120000		
5			0.000000	0.000000	0.000000	0.000000		
6	0.010000	0.010000	0.000000	0.000000	0.320000	0.320000		
7			0.000000	0.000000	0.000000	0.000000		
8	0.010000	0.010000	0.000000	0.000000	0.500000	0.500000		
9			0.000000	0.000000	0.000000	0.000000		
10	0.010000	0.010000	0.000000	0.000000	0.250000	0.250000		
11			0.000000	0.000000	0.000000	0.000000		
Tilt tolerances are specified in degrees.								

From the Options menu, select MTF/Wvf Tolerancing. In the spreadsheet, select RMS wavefront tolerancing, sensitivity mode, and perturbation equation output. The tolerance item is component decentration and we want to compute the wavefront in wavelength 1. The resulting sensitivity output is shown below.

```
*RMS WAVEFRONT SENSITIVITY ANALYSIS - WAVELENGTH 1
THRESHOLD CHANGE FOR INDIVIDUAL TOLERANCE DISPLAY:
                                                            0.010000
                                            CHANGE IN RMS
TOLERANCE
            SRF/
                 TOLERANCE
    ITEM
            GRP
                    VALUE
                           GRD CFG FPT
                                            PLUS
                                                      MINUS
CMP DEC Y
                   0.01
                                           0.014
                                                      0.014
                                                                  0.001572 -4.7537e-19
                                 1
                                    1
                   0.01
0.01
                                                                 0.009040 -4.3880e-19
0.019341 9.5073e-19
CMP DEC Y
             4
                            Α
                                 1
                                     1
                                           0.058
                                                      0.058
                            Α
                                           0.098
                                                      0.098
                   0.01
CMP DEC Y
                                           0.131
                                                      0.131
                                                                  0.030168 -1.1701e-18
Note: Only tolerances that result in a performance change
       of at least 0.01 are displayed.
       No compensators have been used for this analysis.
RMS WAVEFRONT ERROR
                                            NOMINAL
                                                                            STD DEV
                                                     HIGH RMS
                                                                  MFAN
                                                      W/ TOLS
0.222
  CFG FPT
                                                                             (SIGMA)
                                              RMS
                                                                  CHANGE
             FBY
                        FBX
                                   FBZ
                                             0.050
                                                                   0.054
                                                                              0.060
       1
    1
```

From the sensitivity data, we note that all of the *B* coefficients are zero and that all of the *A* coefficients are positive. This means there is no linear term in the second-order expansion of RMS

OPD as a function of component decentration. These results are not surprising, since any decentration destroys the rotational symmetry of the system and we would expect that this would degrade the performance of the lens. This analysis is a good example of the inadequacy of a linear perturbation model for some tolerance criteria. As discussed above, the non-zero A coefficients result in a non-zero average change in performance, in this case, of about $0.12 \ \lambda$.

After the display of the sensitivity data, a performance summary is shown. For each field point, four items are displayed. First is the nominal value of the RMS wavefront error. Second is the estimated high value of RMS wavefront error, with the tolerances applied. This value is taken to be the mean-plus-two-sigma value of the resulting distribution of systems. Finally, the mean change and standard deviation (sigma) of the performance measure are shown.

The level of performance degradation indicated above is probably not acceptable for this lens, which should operate at diffraction-limited or near diffraction-limited performance. We will attempt to rebudget the component decentration tolerances such that the upper limit of the RMS wavefront change corresponds to the Strehl tolerance limit of 0.8, or an RMS wavefront error of 0.07 λ . Since the nominal design has an RMS OPD of 0.049 λ , the maximum change is 0.021 λ .

Before carrying out this analysis, it is necessary, because of the short focal length of the lens, to reset the smallest allowed tolerance and the tolerance increment, which are nominally both 0.01. Use the Tolerance>>Update Tolerance Data>>Grades command to open the spreadsheet, and reset the minimum component decentration to 0.001, and the increment to 0.0001, as shown below.

CMP DECEN	0.0010	0.5000	0.0001	0.0300	0.2000	Gaussian
CMP TILT	0.0100	0.5000	0.0100	0.0500	0.3333	Gaussian

Now run the tolerancing analysis again, but this time in inverse sensitivity mode, with a requested change in RMS OPD of 0.01 λ .

```
stRMS WAVEFRONT INVERSE SENSITIVITY ANALYSIS - WAVELENGTH 1
                                            0.010000
DIFFERENTIAL CHANGE FOR CALCULATION:
THRESHOLD CHANGE FOR INDIVIDUAL TOLERANCE DISPLAY:
                                                             0.001000
                                            CHANGE IN RMS
            SRF/ ALLOWED
TOLERANCE
                 TOLERANCE GRD
                                CFG FPT
            GRP
                                                      MTNUS
   TTFM
                                            PL US
                                                                  0.001083 -3.9455e-19
CMP DEC Y
                   0.0083
                                                      0.010
                                           0.010
             2
                                 1
                                      1
CMP DEC Y
                   0.0035
                                                                  0.001107 -1.5358e-19
             4
                                           0.010
                             Α
                                 1
                                      \frac{1}{1}
                                                      0.010
CMP DEC Y
                   0.0024
                                 1
                                                      0.010
                                                                  0.001114
                                                                             2.2818e-19
             6
8
                             Α
                                           0.010
                                      1
                   0.0141
CMP DEC Y
                                 1
                                           0.010
                                                      0.010
                                                                  0.001092
                                                                             5.1559e-20
                             Α
CMP DEC
         Υ
            10
                                                                  0.001089 -2.2232e-19
                   0.0019
                                 1
                                           0.010
                                                      0.010
```

Note: Only tolerances that result in a performance change of at least 0.001 are displayed.

No compensators have been used for this analysis.

RMS WAVEFRONT ERROR										
CFG FPT	FBY	FBX 	FBZ	NOMINAL RMS 0.050	HIGH RMS W/ TOLS 0.082	MEAN CHANGE 0.008	STD DEV (SIGMA) 0.012			
				0.030	0.002	0.000	0.012			

From the above, we see that that the fourth component is the least sensitive to decentration, while the fifth component is most sensitive. The computed allowed tolerances yield a maximum (mean plus two standard deviations) change of 0.08λ , mor than we want. Based on this, we try the following budget

	DECENT	RATION	CLEAR APER	TURE TILT	CENTER OF CURV TILT				
SRF	DCY	DCX	ALPHA BETA		ALPHA	BETA			
2	0.005000	0.005000	0.000000	0.000000	0.500000	0.500000			
3			0.000000	0.000000	0.000000	0.000000			
4	0.003000	0.003000	0.000000	0.000000	0.120000	0.120000			
5			0.000000	0.000000	0.000000	0.000000			
6	0.002000	0.002000	0.000000	0.000000	0.320000	0.320000			
7			0.000000	0.000000	0.000000	0.000000			
8	0.010000	0.010000	0.000000	0.000000	0.500000	0.500000			
9			0.000000	0.000000	0.000000	0.000000			
10	0.002000	0.002000	0.000000	0.000000	0.250000	0.250000			
11			0.000000	0.000000	0.000000	0.000000			
Tilt tolerances are specified in degrees.									

The resulting sensitivity analysis is shown below.

```
*RMS WAVEFRONT SENSITIVITY ANALYSIS - WAVELENGTH 1
THRESHOLD CHANGE FOR INDIVIDUAL TOLERANCE DISPLAY:
TOLERANCE SRF/ TOLERANCE CHANGE IN RMS
                                                                                               0.001000
 TOLERANCE
                                                                                                       A B
0.000393 -2.3768e-19
0.000814 -1.3164e-19
0.000774 1.9015e-19
0.000550 3.6567e-20
0.001207 -2.3403e-19
                                                                                     MINUS
      ITEM
                    GRP
                               VALUE GRD CFG FPT
                                                                     PLUS
 CMP DEC Y
                              0.005
                                                                    0.004
                                                                                     0.004
                     2
4
                                                    1
                                                           1
1
                              0.003
                                             Α
                                                    1
                                                                    0.008
                                                                                     0.008
 CMP DEC Y
                              0.002
                                                    1
                                                           1
                                                                    0.007
                                                                                     0.007
                     8
                              0.01
                                                           1
                                                                                     0.005
 CMP DEC Y
                                             Α
                                                    1
                                                                    0.005
                              0.002
 CMP DEC Y
                   10
                                                                    0.011
                                                                                     0.011
```

Note: Only tolerances that result in a performance change of at least 0.001 are displayed.

No compensators have been used for this analysis.

RMS WAVEFRO	ONT ERRO)R					
CEC EDT	==\/	ED ./			HIGH RMS	MEAN	STD DEV
CFG FPT	FBY	FBX	FBZ	RMS	W/ TOLS	CHANGE	(SIGMA)
1 1				0.050	0.073	0.006	0.009

The upper end of the range of RMS wavefront change with this budget is 0.028λ , slightly larger than our target of 0.021λ . We have not allowed for any compensating parameters during this analysis, so the resulting tolerances are extremely small. This example has been presented to illustrate the types of calculations and analysis that can be performed, not as an example of a complete analysis of a manufacturable lens.